Global Regularity of Wave Maps v. Large Data Local Wellposedness and Perturbation Theory in the Energy Class
نویسنده
چکیده
Using the harmonic map heat flow and the function spaces of Tataru [27] and the author [20], we establish a large data local well-posedness result in the energy class for wave maps from two-dimensional Minkowski space R to hyperbolic spaces H . This is one of the five claims required in [24] to prove global regularity for such wave maps.
منابع مشابه
0 M ay 2 00 8 GLOBAL REGULARITY OF WAVE MAPS III . LARGE ENERGY FROM R 1 + 2 TO HYPERBOLIC SPACES
We show that wave maps φ from two-dimensional Minkowski spaceR to hyperbolic spacesH are globally smooth in time if the initial data is smooth, conditionally on some reasonable claims concerning the local theory of such wave maps, as well as the self-similar and travelling (or stationary solutions); we will address these claims in the sequels [60], [61], [62] to this paper. Following recent wor...
متن کاملm at h . A P ] 8 A ug 2 00 9 GLOBAL REGULARITY OF WAVE MAPS III . LARGE ENERGY FROM R 1 + 2 TO HYPERBOLIC SPACES
We show that wave maps φ from two-dimensional Minkowski spaceR to hyperbolic spacesH are globally smooth in time if the initial data is smooth, conditionally on some reasonable claims concerning the local theory of such wave maps, as well as the self-similar and travelling (or stationary solutions); we will address these claims in the sequels [67], [68], [69], [70] to this paper. Following rece...
متن کاملGlobal Regularity of Wave Maps Iv. Absence of Stationary or Self-similar Solutions in the Energy Class
Using the harmonic map heat flow, we construct an energy class Ḣ1 for wave maps φ from two-dimensional Minkowski space R to hyperbolic spaces H, and then show (conditionally on a large data well-posedness claim for such wave maps) that no stationary, travelling, self-similar, or degenerate wave maps exist in this energy class. These results form three of the five claims required in [18] to prov...
متن کاملGlobal Regularity of Wave Maps Vii. Control of Delocalised or Dispersed Solutions
This is the final paper in the series [18], [19], [20], [21] that establishes global regularity for two-dimensional wave maps into hyperbolic targets. In this paper we establish the remaining claims required for this statement, namely a divisible perturbation theory, and a means of synthesising solutions for frequencydelocalised, spatially-dispersed, or spatially-delocalised data out of solutio...
متن کاملar X iv : 0 90 6 . 33 84 v 1 [ m at h . A P ] 1 8 Ju n 20 09 ENERGY DISPERSED LARGE DATA WAVE MAPS IN 2 + 1 DIMENSIONS
In this article we consider large data Wave-Maps from R into a compact Riemannian manifold (M, g), and we prove that regularity and dispersive bounds persist as long as a certain type of bulk (non-dispersive) concentration is absent. This is a companion to our concurrent article [21], which together with the present work establishes a full regularity theory for large data Wave-Maps.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008